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Abstract

Seasonality is among the most visible properties in time series data, yet a multi-
tude of statistical tests devised over decades of research have only achieved limited
success in its detection. In this paper we examine eight existing tests of seasonality
and show that there is significant variation in how they classify a series. We then
show how this variation, combined with characteristics of the time series (e.g. auto-
correlation, frequency, skewness, kurtosis, etc.), can be exploited by a Random Forest
(RF) framework to map the hypothesis test space and make more accurate predictions
regarding the seasonal disposition of a series. Our proposed method reduces Type II
errors by approximately sixty percentage points over the next best alternative.
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1 Introduction

The past several years have proven to be a volatile period for seasonal adjustment. A great

deal of attention has been paid to the identification and remediation of residual seasonality,

that is seasonal fluctuations which remain post-adjustment (Gilbert et al., 2015; Moulton

and Cowan, 2016; Lunsford, 2017; Cowan et al., 2018; Wright, 2018). Detecting seasonality

is a unique task in the data provider context since a single analyst may be responsible

for identifying seasonal patterns in hundreds if not thousands of underlying series which

are used to produce aggregate economic indicators. For many central statistical agencies

around the world there is a preference for indirect adjustment; that is to test the underlying

components of an economic indicator and adjust them individually before aggregating to

a feature statistic (e.g. Gross Domestic Product).1 Indirect adjustment is preferred for

two primary reasons. First, it preserves the accounting relationship from the underlying

components to the aggregated indicator, and second it allows individual components with

wildly different seasonal patterns to be treated separately thus improving the ability to

discern seasonal aspects of the data from features of interest. This makes the accuracy of

the testing channel of particular importance to providing aggregate series free of seasonal

features.

As with any paper covering seasonality it is important to define what constitutes sea-

sonal features in the data. In this paper we use a rather agnostic definition of seasonality,

that is if the data can be generated by a seasonal auto regressive integrated moving av-

erage (SARIMA) process we consider it to be seasonal. We show, using finite sample

simulations, that many of the tests used to detect seasonality are poorly sized under the

null, have low power, and often fail completely at recognizing seasonality over entire por-

tions of the parameter space. These include tests such as, the QS test (QS), the F-test for

stable seasonality (D8F), the F-test for moving seasonality (FM), the “M7” test (M7), the

model based F-test (FMB), the Kruskall-Wallis test (KW), the Welch test (WE), and the

1The U.S. Bureau of Economic analysis has relied on indirect seasonal adjustment precisely so that
users can trace the estimates of GDP and its components back to source data. See https://www.bea.

gov/news/blog/2015-06-10/snapshot-seasonal-adjustment-process-gdp for a brief overview of the
process. This method is also the preferred method for Eurostat (https://ec.europa.eu/eurostat/web/
sector-accounts/methodology/seasonal-adjustment-key-series), Stats Canada (https://www150.
statcan.gc.ca/n1/pub/12-539-x/2009001/seasonal-saisonnal-eng.htm), among others.
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Friedman test (FR), many of which form the back bone of testing within the X-13 ARIMA-

SEATS (hereafter X13) program provided by the U.S. Census Bureau.2 Moreover, we show

that there is significant variation in how these tests classify any single series meaning that

the claim of seasonality, or lack thereof, strictly depends on which test one is willing to

believe. We exploit this variation in the test statistics, and the characteristics of the time

series itself (e.g. autocorrelation, kurtosis, frequency, etc.) to form a pseudo-composite test

for seasonality using a Random Forest (RF) model (Breiman, 2001).3 By projecting the

hypothesis test(s) of seasonality as a classification problem we are able to reduce Type II

errors by nearly sixty percentage points, and improve the overall accuracy of identifying

seasonality by nearly thirty one percentage points.

In an optimal environment, when a series exhibits seasonality it would be identified

and “perfectly” removed.4 The implication is that any seasonality exhibited by aggregated

indicators is purely an artifact of the aggregation, thus it can be ignored. Unfortunately,

despite seasonality being among the most visible properties in time series data, our ability to

detect seasonality has only achieved limited success. This is in part driven by a high degree

of definitional malleability, a situation which is made clear by Gómez and Maravall (2001)

who wrote “... the absence of a well-defined and generally accepted definition has fostered

proliferation of procedures, and made it difficult to find common grounds for comparison.”

Our lack of perfection in testing for seasonality means that residual seasonality can occur

through not only the aggregation channel but also through the testing channel. A failure

to reject the null of no seasonality, when the null is false, means that aggregated series

include seasonal features from some of the underlying components. The goal of this paper

is to improve the accuracy of testing for seasonality such that we mitigate the effect the

2The X13 program and its predecessors are the tools most widely used for identifying and removing
seasonality by practitioners around the world. Other options do exist (e.g. JDemetra+) though the tests
used for identifying seasonality are largely consistent across platforms.

3We calculate these statistics using functions written by Rob J. Hyndman, see https://robjhyndman.

com/hyndsight/tscharacteristics/ . These functions are based off of Wang et al. (2006) and Wang
et al. (2009).

4Of course this is completely unrealistic as Jaynes (2003) noted that “... we do not seek to remove the
trend or seasonal component from the data: that is fundamentally impossible because there is no way to
know the ’true’ trend or seasonal term. Any assumption about them is necessarily in some degree arbitrary,
and is therefore almost certain to inject false information into the detrended or seasonally adjusted series.
(p. 536)”. The thought exercise is informative though in the sense that it gives us a normative view of
how seasonal adjustment interacts with the aggregation of the data to provide the statistics of interest.
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testing channel has on producing residual seasonality in the aggregates.

Before continuing, we would like to elucidate this concept of definitional malleability.

Hopefully by doing this we will be able to contextualize why the definition we use is more ag-

nostic and abstracts away from the arguments that have so often stymied discovery. Lovell

(1963) defines seasonality by three main characteristics; orthogonality, idempotency, and

symmetry. The seasonal components of a series must be independent of the non-seasonal

components (e.g. trend or irregular), if a series is adjusted for seasonality which previously

has already been adjusted there should be no changes, and if a linear model of adjustment

is used, Xa
t = AXt, the matrix A should be symmetric. This is a very specific definition but

focuses on the outcome of a seasonal adjustment rather than what a practitioner should be

looking for vis-à-vis seasonality. Meanwhile, Nerlove (1964) defines seasonality a bit more

narrowly, it is present if there are spectral peaks at seasonal frequencies, where seasonal

frequencies are defined through trigonometric functions. More recently Hillmer and Tiao

(1982) defined seasonality as period fluctuations which are of similar intensity each year

while Harvey (1990) defines seasonality as a mean-zero repetition over any one-year period.

Finally, McElroy (2008) defines seasonality in a practical manner based on the behavior of

the autocorrelation function (ACF); a series is seasonal if, at the seasonal periods, there

are troughs or peaks in the ACF. It should be clear that many of these definitions are

similar upon first glance but can produce wildly different interpretations when examined

more deeply.

This definitional malleability has produced tests which are constructed in an ad hoc

fashion, testing a variation on a theme rather than a unified approach to the problem.

For example, according to the United States Bureau of Economic Analysis (BEA) and

Bureau of the Census (Census), a series is considered seasonal if the F-stable statistic

(D8F) is greater than seven. Alternatively, if the M7 statistic, a non-linear combination

of the F-stable and F-moving statistics, is less than 1 it indicates identifiable seasonality.

Finally, the QS statistic (Maravall, 2012), built on the autocorrelation function of the

series, indicates seasonality if the resulting p-value is 0.01 or less (Lytras et al., 2007;
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Cowan et al., 2018).5 Consider that, enclosed within this guidance, there is no mention of

fixing the Type I error rate (alpha), nor the distribution under the null which produced

these critical values. Additionally, it is important to note that these statistical tests are

only part of a broad spectrum of practices used to identify seasonal series and our goal

with this paper is to evaluate only the test statistics themselves, abstracting away from

the numerous interventions based on other information (i.e. analyst knowledge, alternative

information, etc.).

We are not the first to draw a link between the inherent issues with current tests

for seasonality and the potential use of Random Forests. Webel and Ollech (2017, 2018)

use what’s called a Random Forest of Conditional Inference Trees to choose a set of test

statistics which, when used in combination with tree based decision rules, maximize the

accuracy of the testing process. Their goal was to eliminate redundant information and in

effect prune away tests which provide little information. We see two main issues with this

approach; first, the use of p-values in the training and testing portion of the model assumes

that the correct critical value under the null is used.6 Second, and more importantly, the

end result does not use the predictive power of the RF (arguably the reason to use it in

the first place), but rather continues to use flawed test statistics with more complicated

decision rules. We would also like to point out that, much like the decision rules outlined

earlier, there is no ability to control the Type 1 error rate in this environment nor is it clear

what the Type I error rate is under such a paradigm.

The remainder of this paper is structured as follows. Section 2 outlines the notation we

will use throughout the remaining sections and outlines random forest modeling. Section

3 uses a simulated environment to illustrate the properties of existing tests and compares

the results of RF predictions to the next best test. Section 4 contextualizes these results

using two case studies. Finally, Section 5 concludes and provides additional avenues for

research.

5While the cut-offs outlined in Lytras et al. (2007) are used by the Census, additional information
can be found at https://www.census.gov/ts/papers/G18-0_v1.1_Seasonal_Adjustment.pdf which
applies this more broadly to seasonal adjustment performed by the Census.

6In short a series is seasonal if the p-value of the QS-test is less than 0.01 or the p-value of the Kruskall-
Wallis test is less than 0.002.
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2 Detecting Seasonality

We begin by introducing the notation we will use hereafter. Consider the model,

φ(B)Φ(Bf )Yt = θ(B)Θ(Bf )εt, (1)

where Yt is the observed time series – indexed by t = (1, . . . , T ) and periodicity f ∈ {4, 12}

– the standard and seasonal backshift operators are represented by B and Bf respectively.

The terms φ(B) and Φ(Bf ) are the pth order autoregressive (AR) polynomials in B and

Bf respectively, e.g. φ(B) = −φ1B − φ2B
2 − . . . φpBp, etc., while θ(B) and Θ(B) are the

qth order moving average (MA) polynomials. The noise term, εt, is an independently and

identically distributed Gaussian process, εt ∼ (0, σ2). Going forward we will describe this

model in the standard (p d q) (P D Q)f notation, for example (2 0 1) (1 0 0)12 would

indicate an AR(2) process in Y with an MA(1) process in ε, and an AR(1) seasonal process

in Y with monthly periodicity in the observed series. The order of integration for the series

is denoted by d for the series process and D for the seasonal.

A series will be considered seasonal if Φ 6= 0 or Θ 6= 0. Moreover, we are approaching

this from the perspective of a data provider. That is, our end goal is not to estimate a

model, or provide inferences regarding the development of a series. Rather, we aspire to

identify candidates for seasonal adjustment. We will assume that the ARIMA portion of

the process, represented by φ and θ are adequately modeled. More precisely, this means

that our data generating process for the simulations contained herein is some variation of

(0 1 0)(P 0 Q)f . This is akin to examining the residuals of a fitted ARIMA model which

may or may not be seasonal depending on the values of P or Q.

As previously mentioned, each test for seasonality outlined was created with a slightly

different definition in mind. As a result there is significant variation in the classification

of series between the tests. For example, in Figures 1a to 1f we show this variation over

100, 000 simulated series with quarterly frequency for six tests as compared to the Kruskal-

Wallis. Series in red are generated with a seasonal pattern while those in blue are a simple

random walk process (white noise in first difference). Note that for those series in the

lower left quadrant both test statistics fail to reject the null hypothesis of no seasonality;
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red series in this area are the Type II errors we are looking to reduce. Those series in

the upper right quadrant represent those for which both tests reject the null hypothesis,

and the other two quadrants indicate disagreement on the null hypothesis between the two

tests. These different patterns of variation lead us to believe that the multidimensional

hypothesis space for seasonality is in fact disjoint, a feature for which decision trees and

random forests are known to excel.

[Figure 1 about here.]

These trees are created by bootstrapping the observations, and randomly sub-sampling

the features of interest. Unlike regression, the objective of Classification and Regression

Trees (CART) is to accurately predict membership to a set of classes C, doing so by

recursively splitting a sample into smaller, more homogeneous partitions known as nodes.

Each split is the result of a search across all features, X, for an optimal threshold θ, first

generating candidate splits, and selecting the value that minimizes Gini Impurity (G),

G = 1−
C∑
c=1

p2c , (2)

where pc is the proportion of observations which belong to a class c and G ∈ {0, 1}.

Returning to our concern of a binary outcome, if a node contains just one class then

pc = 0, otherwise pc > 0. Lower values of G indicate greater classification accuracy. The

resulting child nodes of the mth split are thus defined by threshold θm along feature xj,

r− = {r : xj < θ}, (3)

r+ = {r : xj ≥ θ}, (4)

where r− and r+ are partitions of observations that fall below and above the θ, respectively.

The resulting child nodes are further partitioned until pre-defined algorithm stopping

criteria are met, such as a minimum node size or the model’s overall Gini Impurity reaches

a threshold. All nodes in this fully grown tree are referred to as leafs, Rm, and observa-

tions within a leaf have an expected value γm. The predictions from this hierarchical tree
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structure can be written as,

T (X; Θ) =
M∑
m=1

γmI(x ∈ Rm), (5)

where T is a tree defined on features X, and with parameters Θ = {Rm, γm}m. Thus, as

CART models are trained, each observation is predicted to have a value of γm based on its

mapping to leaf node Rm as located by nested binary criteria of X. The method offers a

number of benefits, including implicit variable selection, and the ability to flexibly learn the

critical value of each seasonality test under different conditions. However, the algorithm

does tend to over-fit and produce noisy predictions – a less than desirable condition when

detecting seasonality.

The Random Forest algorithm extends the CART machinery through bootstrap aggre-

gation, which has the effect of producing predictions that are robust to over-fitting. The

basic algorithm is simple and repetitive:

1. Construct B number of samples with replacement of n observations and randomly

draw k < K variables.

2. Train CART model Tb on the bth sample.

3. Average the predictions from each Tb to obtain a probability of membership with

class C = c.

We define this probability as p̂i = 1
B

∑B
b=1 Tb(X; Θ) where p̂i = 1

B

∑B
b=1Rmb and p̂i ≥ 0.5

is flagged as a seasonal series.

In Figure 2 we outline the overall flow of the RF algorithm. Random sampling through

the bootstrap is followed by a partition into training and out-of-bag (OOB) data. The

OOB is used to calculate the error rate which describes the overall fit of a single decision

tree. From the training set a sub sample of features is chosen at random and a decision

tree is grown. This process is repeated a predetermined number of times and the collection

of trees are then averaged to create the RF. Random Forests can be tuned for greater

accuracy through a model validation framework, focusing on hyper-parameters such as the

number of bootstrap iterations, B, and randomly drawn covariates, k. For simplicity, we

fix B = 500, and k to
√
K.
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[Figure 2 about here.]

3 Simulations

This section is broken into four subsections. In the first we discuss the simulation environ-

ment including the data generating process and method used to determine the appropriate

parameters. In Section 3.2 we outline new facts about the existing tests for seasonality

mentioned earlier. Finally, in Section 3.3 we discuss the performance of the Random Forest

from an out-of-sample perspective and compare those results to the next best available

test. Finally, in Section 3.4 we summarize all of the findings both about existing tests and

the RF approach.

3.1 Simulation Structure

To study the efficacy of a composite test for seasonality produced by a random forest,

we use a simulated environment to create both a training and test set of data. Each set

consists of M = 5, 000, 000 simulated time series, indexed by m = (1, . . . ,M), of varying

length and structure. For the sake of brevity we will contextualize the simulation structure

through the training set. To begin, let πs ∼ U(0, 1) be the probability of a series being

seasonal or not such that,

ms =


φ(B)Yt = εt for 0.00 ≤ πs < 0.50

φ(B)Φ(BS)Yt = εt for 0.50 ≥ πs < 0.75

φ(B)Yt = Θ(BS)εt for 0.75 ≥ πs ≤ 1.00.

(6)

Note that in this structure we are not allowing a “mixed” seasonal structure, that is one

which contains both AR and MA components as originally outlined in Equation 1. This

restriction is mainly to limit the number of possible cases within the simulation study thus

providing sufficient sampling within the model space, but is also a recommended guideline

used by the U.S. Census Bureau in their seasonal adjustment practices.7

7See https://www.census.gov/ts/papers/G18-0_v1.1_Seasonal_Adjustment.pdf, page 2, for what
specifically constitutes a mixed model.
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Conditional upon a series being seasonal, πs ≥ 0.50, the dimensionality, md(Φ,Θ) ∈

{1, 2, 3}, is determined through probability πd ∼ U(0, 1) such that,

md(Φ,Θ) =


1 for 0.00 ≤ πd < 0.33

2 for 0.33 ≤ πd ≤ 0.66

3 for 0.66 < πd ≤ 1.00.

(7)

For example, md(θ) = 3 implies a seasonal series of the MA type with three seasonal lags.

This means that, of the 2.5 million series we generate that are seasonal, approximately

400, 000 series of each seasonal structure (sAR and sMA) and dimensionality will be gen-

erated. In all cases the value of φ = 1 and σ2 = 1, thus the AR process for each DGP

is a random walk. The only difference is the presence, position, and dimensionality of the

seasonal lags.

Two main considerations of the data are left to be outlined. First, frequency of the

data, which we will define as f ∈ {4, 12}, is determined through a draw from πf ∼ U(0, 1)

such that,

mf =

4 for 0.00 ≤ πf < 0.50

12 for 0.50 ≤ πf ≤ 1.00.
(8)

This implies a balanced sample of quarterly and monthly data sets.8 Finally we determine

the length of the series by drawing from a πl ∼ U(10, 50) distribution. Taking the floor

of each draw from this distribution, ml = bπlc, means that the series we generate are

only complete year series between ten and fifty years in length with the final number of

observations determined via T = mf ×ml. Combining the notation above each series can

be characterized by m{s,d,f,l}, for example a series listed as m2,2,4,12 would indicate a series

generated from a (0 1 0)(2 0 0)4 process with 12 full years of data, T = 48. Based on this

outline there are 482 unique data structures which are contained with in simulated sample

space. Figure 3 outlines the process flow for the data generating process that governs the

8Note that, at this time we are limiting the frequency only to monthly and quarterly primarily because
these are the data frequency examined by most statistical agencies. This could be expanded to include
more high/low frequency data sets if appropriate.
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simulations.

[Figure 3 about here.]

Once the features of each data set, m, have been determined we generate a vector of

parameters subject to the constraint(s)
∑3

d=1 |Φd| < 0.95 or
∑3

d=1 |Θd| < 0.95 for any series

which is seasonal. This vector of parameters is distributed as MVN(0, Iσ2) where σ = 0.25.

This means that 99% of all parameter draws fall in the interval of (−0.644, 0.644), and the

constraint implies that the seasonal portion of the series remains stationary.

3.2 New Facts, Old Tests

Each of the alternative tests are outlined in Appendix A, and as mentioned previously these

include the major tests used in X13 and those found in both alternative adjustment software

and literature. One of our primary concerns is the lack of knowledge around the existing

tests, specifically with respect to the null distribution and the critical values a practitioner

should use to control Type I errors (see Dagum (2005) & Ladiray and Quenneville (2012)

among others). This section focuses on evaluating the empirical size and power for each of

the eight tests of seasonality we will utilize in the RF so as to provide a basis for comparison,

not only within the existing tests but between them and the proposed alternative.

To examine the distribution of each test statistic under the null we simulated 20, 000

series from a (0 1 0)(0 0 0)s SARIMA where s ∈ {4, 12}. In all cases we set T = 1200

so as to approximate long finite sample conditions that might feasibly be seen from the

standpoint of a central statistical agency.9 For each of the 20, 000 series we record each test

statistic to form an empirical approximation of the distribution under the null hypothesis.

From this we are able to evaluate if the recommended critical value (e.g. χ2
2 for the QS

statistic) is close to the appropriate quantile of the empirical distribution.

[Table 1 about here.]

[Table 2 about here.]

9For context, the BEA tracks Gross Domestic Product on a quarterly basis from 1947 to present; this
entire series is T < 300.
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In Tables 1 and 2 we show that the current critical values for roughly half the tests

are poorly sized when considering a 5% Type I error rate. The QS, D8F, and M7 are all

undersized tests in both quarterly and monthly data which indicates a false reduction in

power, and a false increase in the Type II error rate relative to what it would be if the

Type I rate were fixed correctly at 5%. Conversely the FM statistic is over-sized under the

null – dramatically so in the monthly frequency data – meaning that it over-rejects and

presents with false power and lower Type II error rates than would otherwise be the case.

The remaining tests – the FMB, WE, KW, and FR – are all appropriately sized under the

null distribution.

[Figure 4 about here.]

In Figure 4 we plot both the nominal and empirical distributions of the QS and FM

statistics under the null to illustrate the key differences. Recall that we used T = 1200

to construct these test statistics and it is expected that, though this is a finite sample,

the nominal and empirical distributions should be similar and/or converging. For the QS

statistic, the null distribution of which is unknown but can be reasonably approximated by

a χ2
2 distribution (Maravall, 2011), the empirical distribution is far from the nominal. The

resulting critical values for α = 5% are roughly 40% lower than the assumed. This figure

makes it clear that using the nominal critical value(s) facilitates an under-rejection of the

null, which has implications for the test’s power when the null is false.

The story however is reversed with respect to the FM statistic. The nominal critical

values are too small, which leads to an over-rejection of the null. This makes the FM test

look more powerful than it actually is. The key take away from Figure 4, and both Tables

1 and 2, is that even at T = 1200 the empirical null distribution is often nowhere near

the assumed null distribution. This has implications on everything from the critical values

under some assumed α, to the p-values calculated for the test statistic. In Appendix B we

provide tables that indicate recommended critical values for each test statistic from small

sample sizes (five (ten) years of monthly (quarterly) data) to the larger sample size outlined

in Tables 1 and 2. It is important to note that the “settling” time for these test statistics

is anywhere between five to forty years worth of data depending on its frequency.

[Figure 5 about here.]
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Having fixed the size of each test, we can now turn to comparing the power of the

tests, and determine if there is a uniformly more powerful test for seasonality when applied

to the SARIMA DGP. The interest here is two-fold, first we want to determine what the

most powerful test is so as to provide practitioners with a guide for reliability. Second,

we would like to know which single test (or group of tests) to use as a comparison for our

results using the RF. The power of each test is shown using the empirical critical values

outlined earlier. To illustrate the power of each test we have plotted both (0 1 0)(2 0 0)4

and (0 1 0)(2 0 0)12 seasonal processes which were generated through the aforementioned

simulation parameters. The AR plots found in Figure 5 are shown through a contour plot

of the parameter space for Φ. Each point represents a series with coordinates (φ1, φ2), and

for simplicity we have omitted the case where φ1 = φ2 = 0. This means that every series in

this plot is by definition seasonal, and that a perfect test for seasonality would reject the

null for all of the series. If a test correctly rejects the null of no seasonality then the point

is red while if it fails to reject the null it is blue.

[Figure 6 about here.]

From these plots, and those included in Figure 6, we can see that, of the eight tests, the

QS is the most powerful over the domain of the parameter space with power approaching

40%. It is interesting to note that for all tests with the exception of the FM, the coverage

is limited to only the right half of the parameter space. If φ1 < 0, many of these tests

will always fail to reject the null when the null is false. These results hold not only as the

dimensionality changes but across seasonal structures (e.g. MA models).10

3.3 Results from the Random Forest

In order to evaluate results from the RF we used our trained model to predict an out-

of-sample test set, comparing the classification of each series to its true seasonal status.

With an out-of-bag (OOB) error rate of 17.05% within the training set, predictions on

the 5, 000, 000 series in the test set have an out-of-sample classification error rate of 5.00%.

Since we have a large number of features, some of which are only minimally informative, the

10Though not plotted here we do discuss the accuracy of MA models when we examine the results from
the RF predictions and provide results through Table 3.
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training includes trees which have very little predictive power, and thus create more OOB

error. On the other hand, predictions use the entire set of features, including their relative

information content, and as a result our out-of-sample predictions are more accurate than

the OOB.

In Table 3, we show the accuracy of each test using the empirical critical values for the

traditional tests.11 The first row outlines accuracy over the entire test space previously

outlined in Figure 3. The RF predictions outperform the next best alternative by thirty-

one percentage points. This top line accuracy measure includes both cases when the null is

false (a seasonal series) and true (a non-seasonal series). In the subsequent blocks of each

table we outline the accuracy conditional upon the null being false and dimensionality of

the seasonal component. Moreover, we break down those blocks based on the domain of

the parameters in question.

[Table 3 about here.]

For example, the first block outlines the accuracy of each test conditional upon the

DGP being a (0 1 0)(1 0 0)f , where f ∈ 4, 12. This of course implies that the null is false,

or more plainly that every series in this block is seasonal by construction. Here, the RF

predictions outperform the next best alternative by fifty-eight percentage points. If we

further condition upon the sign of Φ we see that if Φ > 0 the RF outperforms the best

alternative by twenty-nine percentage points, and if Φ < 0 this improvement increases to

eighty-three percentage points. Note that in the last column we have included the number

of series which exist within that portion of the model space (e.g. the (0 1 0)(1 0 0)f space

includes a total of 416, 529, simulated series out of the 5, 000, 000 generated). This pattern

of improvement over the alternatives persists across each of the data segments, with the

largest improvements coming when Φp < 0.

For series generated with a moving average seasonal process the results are largely

consistent with those from the autoregressive structure, however overall accuracy does

decline in all cases. For example, when looking at accuracy conditional upon Q > 0 the RF

predictions are sixty-one percentage points better than the alternative, but five percentage

points lower than the corresponding RF accuracy for P > 0. Note however, that the loss in

11We discuss the empirical table here rather than the nominal and include the latter in Appendix C.
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accuracy within the RF between MA and AR structures is smaller (5.26%) than the best

alternative (14.71%). Not only is the RF more accurate compared to the alternatives, but

it also produces less within variation across data structures.

[Figure 7 about here.]

While Table 3 shows a clear benefit from the RF approach, it is still important to

understand what features drive these results. Figure 7 provides the top fifteen features as

measured by their overall contribution to the mean reduction of Gini Impurity. The QS

Statistic is not only the best performing of the traditional tests for seasonality, it is also

one of the most important features in the RF.

Most interesting about this is that components of the QS statistic are as important,

if not more so, to the classification of each series than the QS itself. The QS statistic is

calculated as,

QS = T (T + 2)

(
ρ̂2(f)

T − f
+

[max{0, ρ̂2(2f)}]2

T − 2f

)
, (9)

with null hypothesis H0 : γ(m) ≤ 0 for m ∈ {f, 2f}. The value ρ̂(f) corresponds to the

value of the ACF at a one-year lag, while ρ̂(2f) corresponds to that of a two-year lag, both

of which are highly valued by the RF. This is important because the domain of a seasonal

autoregressive or moving-average term does not always produce a positive value of γ(m)

for m ∈ {f, 2f}. In Figure 8 we show the accuracy of the RF and QS conditional upon

either a (0 1 0)(1 0 0)12 or (0 1 0)(0 0 1)12 DGP. Note how the QS statistic has an accuracy

of zero if the value of Φ or Θ is less than zero. The series are seasonal by construction,

however the negative coefficient produces a value for γ(12) which is negative, not positive.

As a result the QS is zero by construction, and it fails to reject the null hypothesis even

when we know the null hypothesis is false! It is also clear that, even in the portion of the

domain under which the QS has positive accuracy, the RF outperforms the alternative by

a considerable margin. The fact that components of the QS are as important to the RF as

the QS itself means that the QS statistic leaves information on the table with respect to

the ACF, even if γ(m) > 0.

[Figure 8 about here.]
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In Figure 9 we extend this plot to a second dimension in the autoregressive and moving-

average term. Here we plot the contour of joint distribution for Φ (row one) and Θ (row

two) with each point representing a single simulated series with parameter pair (Φ1,Φ2) or

(Θ1,Θ2) respectively. If the test in question rejects the null hypothesis, then the series is

red, while those it fails to reject are in blue. A perfect test would reject the null for all

of these series as we have omitted the simulated, non-seasonal series, and all points would

appear red. However, it is expected that most of the blue series, those in which we commit

a Type II error, will be close to the center of the distribution. For example, this is where

Φ1 and Φ2 are approximately zero. The results of the RF, shown on the right, provide what

is expected; as we move away from the origin the RF quickly predicts that a series will

be seasonal across the entire domain. On the other hand, the QS test correctly identifies

seasonal series in less than half of the domain. Recall that the QS statistic is by far the

best performing of the traditional statistics meaning that these number of series in which

the null is correctly rejected goes down for the alternatives.

[Figure 9 about here.]

Finally, we would like to point out that our choice of cutoff for the classification of a series

as seasonal, 0.50, is relatively arbitrary and may not be the most efficient. To illustrate

how sensitive to this cutoff our results are we plot the Receiver Operating Characteristic

(ROC) curve in Figure 10. Here we plot the True Positive Rate (TPR), representing the

series which are correctly classified as seasonal, against the False Positive Rate (FPR), or

those which are incorrectly classified as seasonal. If this decision were random then it would

lie upon the 45◦ angle and any portion of the curve above this line indicates a cutoff which

is better than random. The results of this exercise show us that the choice of 0.50, while

initially quite arbitrary, is nearly optimal.

[Figure 10 about here.]

3.4 Recapping the Results from Simulations

Through out this section we have uncovered several new facts about existing tests. Specif-

ically, the most common tests used by statistical agencies such as the U.S. Census Bureau,
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U.S. Bureau of Economic Analysis, United Kingdom Office of National Statistics, etc. suffer

from poor statistical properties, including insufficient size under the null. Using simula-

tions we show that the length of a time series needed to approach nominal critical values for

the QS, D8F, FM, and M7 statistics exceeds that which is feasible for a central statistical

agency, or for that matter any practical time series. To combat this we provide new critical

values based on a Monte Carlo Study which maps the null distribution under a variety of

series lengths and provide those in Appendix B.

In addition to these new facts regarding existing tests, we show how a RF can be used to

exploit the variation in classification by these tests to more accurately predict if a series is

seasonal. We trained this random forest using 5, 000, 000 series generated from a SARIMA

structure with varying dimensionality and parameter values. The gains in accuracy are

substantial across the board regardless of the seasonality structure (moving average vs.

autoregressive), or size of the seasonal effect. We show how existing tests, as compared to

the RF, not only fail to perform well over the domain of parameters governing the size of

the seasonal effect, but also that they fail to extract maximal information from the inputs

upon which they are derived.

4 Empirical Examples

4.1 U.S. Retail Sales: Shoe Stores

To contextualize the use of RF in determining the seasonality classification for an individual

series we turn to McElroy (2008) as a guideline, and look at U.S. Retail Sales of Shoe Stores,

both seasonally and not seasonally adjusted. Recall that the purpose of this paper is not to

adjust any single series, nor offer guidance on when an adjustment is adequate, but rather

to identify if a series should be classified as seasonal, or not, for the purposes of identifying

candidates for adjustment. Our choice of U.S. Retail Sales of Shoe Stores is important

because in the aforementioned paper the author noted that the seasonally adjusted series

is residually seasonal based on the concept of “negative seasonality”, that is seasonality

which creates troughs at the seasonal frequencies in the ACF. Recall that our objective is to

reduce residual seasonality through the testing channel by reducing the Type II error rate.
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In this instance we have a series which is known to be seasonal, and post adjustment is still

considered to be seasonal. Though the author states that the seasonally adjusted series

is still seasonal, this is done through a visual inspection of the ACF, spectrum, and other

data elements which are not reproducible to scale. Our main focus then is to determine

if the RF agrees with the expert opinion regarding the seasonal classification of this series

both pre and post adjustment.

[Figure 11 about here.]

Figure 11 plots, on the left, raw data for monthly sales as reported by the U.S. Census

Bureau (black), and seasonally adjusted sales (red) from 1984 to 1998.12 In the middle we

have plotted the autocorrelation function for the first-difference log of the not seasonally

adjusted data (∆ln(Shoes)), and to the right the first-difference log of the seasonally

adjusted data (∆ln(Shoes∗)). The positive autocorrelation at lags 12, 24, and 36 in Figure

11b show a clear twelve month seasonal pattern, which is supported by the appropriate test

statistics found in Table 4. All seven tests are in agreement, the autocorrelation function of

the first-difference log, and a visual inspection of the series confirm that the not seasonally

adjusted data are a clear candidate for seasonal adjustment. As expected, the RF agrees

with the overwhelming evidence indicating that the null hypothesis of no seasonality should

be rejected. Figure 12d outlines the relative contribution each of the included features had

in this decision with the final prognosis representing the probability that the null should

be rejected.

[Table 4 about here.]

Recall that, in the aforementioned paper, it was of the expert’s opinion that the sea-

sonally adjusted series exhibited residual seasonality based on the concept of negative

seasonality. In Figure 11c we plot the autocorrelation function of the first-difference log for

the seasonally adjusted series. While the clear spikes at 12, 24, and 36 have been removed

there is now a clear downward spike in the ACF at lags 24 and 36 with a lesser drop at

12It is important to note that we did not seasonally adjust this data ourselves but rather are relying on
the published seasonally adjusted numbers put out by the U.S. Census Bureau. In this way our example
differs from McElroy (2008).
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lag 12. Returning to Table 4 we see that there is agreement among the tests that there

is insufficient evidence to reject the null of no seasonality. Recall however that over the

previous sections we have shown that these tests exhibit poor coverage over the parameter

space domain in a SARIMA framework, and what coverage they do have is plagued by poor

size and power. The RF however uses the variation in the test statistics, combined with

the other features, and predicts that this series, the published seasonally adjusted figures,

is in all likelihood seasonal. In Figure 12e we show the contribution of top features to this

decision. We caution the reader in generalizing the breakdown of contributions found in

Figures 12d and 12e; while the inferences regarding the feature contribution to the decision

are valid for this particular example, they should not be generalized across other series as

those series may lay elsewhere in the sample space.13

[Figure 12 about here.]

4.2 U.S. Import/Export Series

One important facet of the RF predictions is the scalability of the testing procedure. For

example, a single analyst producing a single aggregated data series may be responsible for

synthesizing information from hundreds, if not thousands, of underlying component series.

Obtaining predictions for many series from the RF requires little additional computational

or time burden when compared to a single series. Here we illustrate this by examining

import/export data from the Census both from the standpoint of classification by tradi-

tional tests and that of the RF. This data consists of 255 monthly series outlining imports

to the United States and 254 monthly series of exports.14 The series vary in length from a

minimum of eight years to a maximum of thirty-nine years.

[Figure 13 about here.]

In Figure 13 we two dimensions of variation found using the aforementioned Import/Export

data. For example, in Figure 13a, each point represents a single series from this data with

13We calculated these feature contributions using the “breakDown” package in R version 3.6.1 (2019-07-
05) – “Action of the Toes”. See Staniak and Biecek (2018) for more information.

14We obtained this information from the U.S. Census Bureau Foreign Trade, https://www.census.

gov/foreign-trade/index.html. The raw data that formed the basis for this analysis can be obtained
through https://www.census.gov/foreign-trade/balance/country.xlsx (accessed 10/01/2019).
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coordinate pair (x = KW, y = QS). The dashed, black lines represent the appropriate

nominal critical values for the statistics in question while those in gray represent the em-

pirical values presented herein. Similar to Figures 1a to 1f from the simulated environment,

a series which appears in the bottom left quadrant represents one in which both tests agree

on a failure to reject the null hypothesis. Those series in the upper right quadrant repre-

sent series for which both tests fail to reject the null hypothesis. The remaining quadrants

represent those series in which there is disagreement regarding the seasonal disposition of

the series. Export series in each figure are those which appear as circles (red) and imports

are represented by triangles (blue). It is important to note that there does not appear to be

a pattern of disagreement, e.g. the series in which there is disagreement is not dominated

by imports alone.

[Table 5 about here.]

In Table 5 we outline the fraction of series for which each test rejects the null hypothesis

of no seasonality. This table is constructed using the empirical critical values for each test.

Note that for the vast majority of the tests roughly half of the series in question reject the

null hypothesis though the M7, D8F, and FM tests stand out as outliers in the respect.

The RF predicts that nearly every one of the series, both imports and exports, is seasonal

and should be considered a candidate for adjustment. A result that closely aligns with the

FM test. Again, it is important to note that we are not commenting on whether these

series have been, or will be, seasonally adjusted. Rather, our focus is on identifying series

which exhibit seasonal characteristics in an effort to define the scope of what might need

to be adjusted in an effort to minimize the possibility of residual seasonality should these

series be aggregated. Given the evidence presented in Section 3 regarding the accuracy of

tests it would appear that many of these tests fail to recognize the seasonal nature of these

series either because the seasonal component is relatively weak, or – if framed in SARIMA

terms – the parameter governing the seasonal component is negative.
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5 Conclusion

Residual seasonality has recently proven to be a thorn in the side of statistical agencies, and

spawned criticism for a number of official series produced by those agencies (see McElroy

(2008); Lunsford (2017); Cowan et al. (2018); Wright (2018) for examples). In this paper we

show that inconsistencies in the definition of seasonality have led to tests which have poor

statistical properties in the face of a basic seasonal autoregressive integrated moving average

(SARIMA) data generating process. In addition to their own idiosyncratic weaknesses (e.g.

strict reliance upon stationarity, violation of distributional assumptions, etc.) the tests

produce poor accuracy over the domain of parameters in both single and multidimensional

SARIMA structures.

Since a failure to reject the null hypothesis of no seasonality when the null is false can

lead to residual seasonality in aggregates, any increases in accuracy from the testing channel

will reduce the likelihood of finding residual seasonality. To increase this accuracy we map

the hypothesis space using a Random Forest where our features include the test statistics

themselves and other characteristics of the time series. We show that the predictions from

this random forest are better than any single test at identifying series which are seasonal

across a number of different SARIMA specifications. In our simulated environment we show

that the trained RF model is thirty-one percentage points more accurate than the next best

alternative. Depending on the stratification, this improvement ranges from eleven to eighty-

eight percentage points with larger gains being realized when the SARIMA parameters

are negative. In all cases the RF is strictly more accurate than the alternative options.

Moreover, since the RF is scalable in its predictions, predicting many is not significantly

more resource intensive than predicting a single series. Thus, this tool is useful in the

resource constrained environment many data agencies face.

We then apply the trained RF to two case studies, the first dealing with a single series,

monthly retail trade of shoe stores, shown to have residual seasonality, and the second

examining foreign trade series (McElroy, 2008). In both cases the data are publicly avail-

able, and provided by the U.S. Census Bureau. When examining the former, the primary

goal was to determine if the published seasonally adjusted series should be considered a

candidate for seasonal adjustment thus exhibiting residual seasonality. In this case, the
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trained RF agreed with the aforementioned paper – the seasonally adjusted series is likely

seasonal – with the primary driver of this decision being the autocorrelation function. In

the second application we show that the trained RF indicates that nearly all of the series

included are seasonal, while the alternatives range from 12.3% to 94.9%. The RF identifies

a total of six series out of the 505 examined as seasonal for which no other test agrees.

Recall that the focus of this paper is not to determine if a series has been or ever will

be adjusted, and that a great deal of information beyond the test statistics is used in this

determination. The RF is used primarily as an effort to synthesize the information avail-

able through multiple test statistics with disparate assumptions and conclusions regarding

the same series, and should be taken as but a piece of evidence regarding the seasonal dis-

position of a series rather than the definitive authority on the matter. Finally, we make no

claims about the optimal method for seasonal adjustment and recognize that some filters

may leave fragmented seasonality in the adjusted series which will often go undetected.

This is an avenue for further study with respect to the use of ML methods in the current

seasonal adjustment paradigm.
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A Tests for Seasonality

In this appendix we would like to take a moment to outline the eight tests for seasonality

that are of primary interest. The first four are statistics used in the X13 program employed

by many statistical agencies, and the remaining five are other tests found throughout the

literature. It is important to note that this list is not exhaustive and our comments about

these tests are relevant only so far as the tests themselves pertain to our chosen domain of

interest.

The QS Statistic: The QS statistic is formed by examining the autocorrelation function at

the appropriate seasonal lags (Maravall, 2012). As mentioned earlier, let S be the seasonal

frequency, e.g. f = 4 for quarterly data with a yearly seasonal pattern, and T be the length

of the series. Furthermore, let γ(g) = E[yt+gyt] − E2[yt] represent the autocovariance and

ρ(g) = γ(g)/γ(0) the autocorrelation of Y . The QS statistic can be written as,

QS = T (T + 2)

(
ρ̂2(f)

T − f
+

[max{0, ρ̂2(2f)}]2

T − 2f

)
. (10)

Note that the null hypothesis is H0 : γ(m) ≤ 0 for m ∈ {f, 2f}. This naturally leads

to a restriction on the domain of γ(m) such that if γ̂(m) ≤ 0, then QS = 0. This is a

notable restriction since, if there is a trough in the ACF at the seasonal frequency then,

by definition the QS statistic is zero and the null hypothesis of no seasonality fails to be

rejected. By construction then the QS cannot see the aforementioned negative seasonality.

It is important to note that we know very little about the distribution of the QS statistic

under the null and that we generally use critical values from a χ2 distribution with 2 degrees

of freedom as an approximation Maravall (2011). We will present evidence in Section 3.2

that this is in fact a poor approximation which leads to an undersized test.

The F-stable Statistic: Let k be the number of periods in a yearly cycle and nj be the

number of observations in the jth period of k. The F-stable test is a one way analysis of

variance test written as:

FS =

∑k
j=1 nj(ȳ.j − ȳ..)2/(k − 1)∑k

j=1

∑nj

i=1(yij − ȳ.j)2/(n− k)
, (11)
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where the null hypothesis is H0 : E[y1] = . . . = E[yk] and alternative H0 : E[yp] 6= E[yq] for

at least a single pair (p, q). Theoretically this test statistic should follow a an F-distribution

with (k − 1) and (n − k) degrees of freedom. However, in practice the F-stable statistic,

FS (also known as the D8F), has a nominal critical value of 7. This is because “...several

of the basic assumptions in the F test are probably violated...” (Dagum, 2005; Ladiray and

Quenneville, 2012). A failure to reject the null using this test does not necessarily imply

the series is not seasonal. Rather, the null is stating that there is no difference in the

means of each period over the time span being reviewed. It could be that the seasonality

is affecting the variance in these periods over years, not the mean. It is for this reason that

many practitioners will tell you the D8F should be a small part of the evidentiary profile

when determining if a series is seasonal.

There is one additional point that must be considered, the D8F is computed based

on a transformed series, not the original. Why does this matter? Consider the following

example, suppose we are interested in determining if a series is stationary by using an

augmented Dickey-Fuller test. We transform the original series by taking the difference

and calculate the test statistic which leads us to reject the null that the differenced series

is stationary. This of course implies that the original series was also not stationary since

taking the difference is supposed to move us closer to an I(0) process. Now let’s consider the

alternative, suppose that we fail to reject the null, that the differenced series is stationary.

Unlike the case where we rejected the null, this is not backward compatible with our original

series. In levels the original series could be stationary or not, and our failure to reject the

null on the transformed series provides us no information. In short, our failure to reject the

null of equal means when evaluating the D8F tells us little to nothing about whether the

original series is seasonal or not, rather it is only by rejecting the null that we can safely

claim anything about the original series.

Of course, testing for stationarity is not testing for seasonality so how does this apply to

the topic du jour? The transformation of the series for the D8F includes a decomposition

and testing on what is thought to be the seasonal and irregular pattern. While this is

trivial in cases where the standard trend, seasonal, irregular decomposition holds it is

not clear that this is a benign transformation. The decision of whether the time series
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is additive or multiplicative, and thus determining the type of decomposition, is far from

inconsequential and commonly is decided through information criterion such as AIC, AICc,

BIC, etc. While it is beyond the scope of the current work to prove that this transformation

is inconsequential it is important to note that the D8F and M7 statistic, the latter of which

is a non-linear function of the former, are the worst performing of the tests evaluated herein.

While it may not be causal, the fact that these two are the only tests which rely upon a

transformation of the original series should at least put some skepticism in their use.

The F-moving Statistic: In a complementary fashion to the D8F, a second F-test can

be used to evaluate moving seasonality (Higginson, 1975). This is a two-way analysis of

variance test looking at both the month (or quarter if applicable) and the year. Again, let

k be the number of periods in a yearly cycle and let N represent the number of complete

years in the data. Following notation by Ladiray and Quenneville (2012), the F-moving

statistic is based off of the model,

|SIij − ȳ| = yij = bi +mj + eij, (12)

where bi is the object of interest and refers to the annual effect. Note again that this test

statistic is performed on the transformed time series, much like the D8F. The F-moving

statistic can then be written as:

FM =
k
∑N

i=1(
∑k

j=1 yij/k − ȳ..)2/(N − 1)∑j
i=1

∑k
j=1(yij − ȳi. − ȳ.j + ȳ..)2

, (13)

with the null hypothesis H0 = b1 = . . . = bN . This statistic is distributed as an F-

distribution with (k − 1) and (k − 1)(N − 1) degrees of freedom under the null.

The M7 Statistic: The M7 statistic, outlined by Equation 14, is a non-linear combination

of the F-stable and F-moving statistics, Equations 11 and 13 respectively (Lothian and

Morry, 1978).

M7 =

√
1

2

(
7

FS
+

3FM

FS

)
. (14)
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The M7 statistic uses a base critical value of 1 and is a left-tailed test. This means the null

hypothesis of no seasonality is rejected if M7 < 1 though originally it was designed with

a decision tree mind and not for use in isolation (see Ladiray and Quenneville (2012) pp.

138 for the diagram).15

The Model Based F-test: The Model Based F-test, hereafter FMB, is a regression

based approach which combined an ARIMA model with seasonal dummies to estimate the

presence of a seasonal effect. The base of this statistic is an χ2-test with the null hypothesis

that the coefficients on seasonal dummies are all equal to zero. In finite samples, which is

the case with all tests for seasonality, the variance can greatly influence the test statistic

and as a result a correction is used. This corrected test can be written as,

SD =
β̂′Σβ̂β̂

f − 1

(T − d− f
T − d

)
, (15)

which follows an F-distribution with (f − 1) and (T − f − d) degrees of freedom. This

statistic is shown to have favorable properties in terms of size and power when compared

to some alternatives Lytras et al. (2007).

The Friedman Test: The Friedman test (FR) is a non-parametric testing method which

evaluates if samples are drawn from a population with equal medians. This test uses

ranking of the observations rather than relying on distributional assumptions. Following

notation from Webel and Ollech (2018), let rij be the rank of ith observation in the jth year

and µi = E(rij). The test statistic can then be written as,

FR =
τ − 1

τ

i=1∑
τ

n[r̄i − (τ + 1)/2]2

(τ 2 − 1)/12
, (16)

where r̄i = n−1
∑

j rij, n represents the number of observations in each period i, indexed

by i ∈ {1, . . . , τ}. The null hypothesis is H0 : µ1 = . . . = µτ and follows a χ2 distribution

with τ − 1 degrees of freedom under the null.

15We would like to point out that this varies somewhat. For example, the Office of National Statistics in
the United Kingdom uses a critical value of 1.250 and 1.050 for monthly and quarterly series respectively
while the IMF adheres to the flat critical value of 1.
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The Kruskal-Wallis Test: The Kruskal-Wallis test (KW) is similar to the Friedman test,

in fact it shares the same null hypothesis H0 : µ1, . . . , µτ , but calculates the test statistic

as,

KW =
T − 1

T

τ∑
i=1

ni[r̄i − (T + 1)/2]2

(T 2 − 1)/12
(17)

where ranks are produced over the entire sample, T , rather than each period year. Like

the Friedman test, the Kurskall-Wallis test follows a χ2 distribution with τ − 1 degrees of

freedom under the null.

The Welch Test: Again, borrowing notation from Webel and Ollech (2017) let µi = E(zij)

and z̄i = n−1i
∑ni

j=1 zij. The Welch test (WE) (Welch, 1951) can be written as,

WE =
(τ − 1)−1

∑τ
i=1wi(z̄i − w−1

∑τ
i=1wiz̄i)

2

1 + 2(τ + 2)(τ 2 − 1)−1
∑τ

i=1(ni − 1)−1(1− w−1wi)2
, (18)

where wi = ni/(ni − 1)−1
∑ni

j=1(zij − z̄i)2 and w =
∑τ

i=1wi. WE follows an F distribution

under the null, H0 : µ1, . . . , µ2, with (τ − 1) and
(
3(τ 2 − 1)−1

∑τ
i=1(ni − 1)−1(1 − wi

w
)2
)−1

degrees of freedom.16

16A special thanks to the authors of Webel and Ollech (2017) and Webel and Ollech (2018) for making
many of these seasonal tests available through replication code of their work in the “seastests” R package.
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B Critical Values at Common Values of α

[Table 6 about here.]

[Table 7 about here.]

[Table 8 about here.]

[Table 9 about here.]

[Table 10 about here.]

[Table 11 about here.]

C Nominal Accuracy for RF

[Table 12 about here.]
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Table 1: Critical Values and Size: Frequency = 12 Years = 100

Current CV Current Size Suggested CV New Size

QS 5.991 0.016 3.668 0.050
D8F 7.000 0.000 2.471 0.055
FM 1.792 0.824 8.956 0.049
M7 1.000 0.000 1.712 0.060

FMB 1.797 0.059 1.791 0.060
WE 1.809 0.066 1.802 0.067
KW 19.675 0.048 19.571 0.050
FR 19.675 0.048 19.617 0.049
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Table 2: Critical Values and Size: Frequency = 4 Years = 300

Current CV Current Size Suggested CV New Size

QS 5.991 0.023 3.602 0.059
D8F 7.000 0.002 3.638 0.049
FM 2.615 0.124 3.578 0.050
M7 1.000 0.008 1.259 0.051

FMB 2.612 0.053 2.660 0.050
WE 2.618 0.052 2.642 0.051
KW 7.815 0.052 7.877 0.047
FR 7.815 0.051 7.844 0.048
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Table 3: Empirical Accuracy Table: Test Data

RF QS M7 D8F FM FMB WE KW FR N. Series

Accuracy 0.95 0.64 0.52 0.54 0.55 0.53 0.53 0.54 0.53 5,000,000

ACC|P = 1 0.88 0.30 0.14 0.10 0.03 0.19 0.19 0.13 0.13 416,529
Φ1 > 0 0.88 0.59 0.26 0.19 0.03 0.34 0.34 0.24 0.23 208,181
Φ1 < 0 0.88 0.00 0.03 0.01 0.03 0.04 0.05 0.01 0.02 208,348

ACC|P = 2 0.95 0.34 0.14 0.15 0.19 0.22 0.22 0.18 0.17 416,795
Φ1,Φ2 > 0 0.96 0.81 0.40 0.50 0.22 0.63 0.62 0.55 0.49 103,721
Φ2,Φ2 < 0 0.95 0.00 0.01 0.00 0.15 0.01 0.02 0.00 0.01 103,933∑2
p=1 Φp > 0 0.96 0.61 0.26 0.30 0.19 0.42 0.42 0.35 0.32 208,371∑2
p=1 Φp < 0 0.95 0.08 0.01 0.01 0.18 0.02 0.03 0.01 0.01 208,424

ACC|P = 3 0.98 0.37 0.13 0.19 0.40 0.24 0.24 0.21 0.20 417,260
Φ1,Φ2,Φ3 > 0 0.99 0.91 0.61 0.78 0.46 0.85 0.84 0.80 0.74 52,098
Φ2,Φ2,Φ3 < 0 0.98 0.10 0.00 0.00 0.35 0.01 0.01 0.00 0.00 52,023∑3

p=1 Φp > 0 0.98 0.55 0.26 0.37 0.38 0.46 0.46 0.42 0.39 208,401∑3
p=1 Φp < 0 0.98 0.18 0.00 0.00 0.41 0.01 0.01 0.00 0.01 208,859

ACC|P > 0 0.94 0.34 0.14 0.15 0.21 0.22 0.22 0.17 0.16 1,250,584

ACC|Q = 1 0.87 0.28 0.13 0.06 0.00 0.15 0.15 0.08 0.09 416,757
Θ1 > 0 0.87 0.56 0.23 0.12 0.00 0.26 0.27 0.16 0.16 208,479
Θ1 < 0 0.87 0.00 0.03 0.01 0.00 0.04 0.04 0.01 0.02 208,278

ACC|Q = 2 0.93 0.30 0.15 0.08 0.00 0.16 0.17 0.10 0.10 416,714
Θ1,Θ2 > 0 0.93 0.74 0.38 0.23 0.00 0.40 0.40 0.28 0.27 104,512
Θ2,Θ2 < 0 0.92 0.00 0.01 0.00 0.00 0.01 0.01 0.00 0.01 104,652∑2
p=1 Θp > 0 0.93 0.56 0.28 0.16 0.00 0.30 0.31 0.20 0.20 208,435∑2
p=1 Θp < 0 0.93 0.05 0.02 0.01 0.00 0.03 0.03 0.01 0.01 208,279

ACC|Q = 3 0.92 0.30 0.15 0.09 0.00 0.17 0.17 0.11 0.11 416,462
Θ1,Θ2,Θ3 > 0 0.92 0.75 0.48 0.34 0.00 0.50 0.50 0.39 0.36 52,076
Θ2,Θ2,Θ3 < 0 0.91 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 52,426∑3

p=1 Θp > 0 0.91 0.48 0.29 0.18 0.00 0.32 0.32 0.22 0.21 207,990∑3
p=1 Θp < 0 0.92 0.11 0.01 0.00 0.00 0.02 0.02 0.01 0.01 208,472

ACC|Q > 0 0.90 0.29 0.14 0.08 0.00 0.16 0.17 0.10 0.10 1,249,933

ACC|P,Q = 0 0.98 0.95 0.91 0.96 1.00 0.88 0.87 0.95 0.93 2,499,483

Here we calculate the accuracy based on the empirical critical values for each test and compare them to
the out-of-sample prediction accuracy of the Random Forest. The breakdowns are to show accuracy when
the null is false (equivalent to power) under specific seasonal dimensionality conditions. Note that there is
no constraints on the parameter space of Φ or Θ beyond those which are standard.

33



Table 4: Retail Sales: Shoe Stores Seasonality Test Results

QS M7 D8F FM FMB WE KW FR Obs.

Shoes - NSA 294.188 0.150 200.255 0.659 170.860 225.663 145.312 135.253 179
Shoes - SA 0.000 4.953 0.234 1.491 0.093 0.091 1.361 0.462 179
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Table 5: Percentage of Import/Export Series Flagged as Seasonal

Type RF QS M7 D8F FM FMB WE KW FR N

Exports 1.000 0.424 0.267 0.329 0.078 0.443 0.435 0.537 0.490 255
Imports 0.996 0.516 0.335 0.433 0.114 0.524 0.512 0.587 0.504 254
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Table 6: Empirical Critical Values: Quarterly Data, α = 10%

Time (Years) QS D8F FM M7 FMB WE KW FR

10 7.823 3.035 2.437 1.322 2.441 2.425 4.953 6.067
20 7.083 2.895 2.266 1.369 2.204 2.231 5.901 6.158
30 2.811 2.822 2.285 1.402 2.145 2.146 6.053 6.145
40 2.241 2.870 2.318 1.403 2.158 2.147 6.227 6.231
50 2.177 2.849 2.371 1.405 2.148 2.141 6.219 6.233
60 2.173 2.843 2.441 1.414 2.119 2.125 6.204 6.214
70 2.205 2.858 2.461 1.412 2.114 2.131 6.250 6.200
80 2.214 2.821 2.526 1.423 2.081 2.093 6.162 6.144
90 2.237 2.829 2.538 1.425 2.110 2.121 6.243 6.222
100 2.225 2.837 2.581 1.422 2.093 2.099 6.225 6.176
110 2.288 2.827 2.593 1.425 2.102 2.104 6.185 6.171
120 2.280 2.820 2.628 1.430 2.083 2.085 6.194 6.156
130 2.256 2.825 2.658 1.429 2.092 2.099 6.218 6.163
140 2.282 2.834 2.654 1.424 2.089 2.092 6.261 6.230
150 2.267 2.839 2.685 1.423 2.107 2.106 6.204 6.221
160 2.275 2.843 2.716 1.424 2.113 2.108 6.267 6.260
170 2.266 2.848 2.737 1.424 2.094 2.103 6.215 6.224
180 2.298 2.835 2.753 1.426 2.105 2.112 6.241 6.231
190 2.302 2.820 2.749 1.428 2.087 2.092 6.207 6.225
200 2.269 2.784 2.758 1.438 2.072 2.073 6.187 6.238
210 2.268 2.810 2.779 1.437 2.088 2.095 6.224 6.262
220 2.276 2.812 2.794 1.436 2.101 2.101 6.285 6.260
230 2.269 2.829 2.785 1.428 2.098 2.103 6.235 6.228
240 2.301 2.830 2.799 1.430 2.098 2.095 6.237 6.219
250 2.296 2.847 2.823 1.426 2.095 2.093 6.262 6.181
260 2.298 2.817 2.823 1.428 2.096 2.097 6.240 6.211
270 2.318 2.815 2.820 1.431 2.095 2.093 6.246 6.239
280 2.334 2.826 2.824 1.426 2.109 2.114 6.295 6.239
290 2.304 2.825 2.825 1.424 2.099 2.100 6.291 6.252
300 2.310 2.838 2.834 1.426 2.099 2.100 6.280 6.267

Note: For each time set we generated 20, 000 series where the null hypothesis is true, there is no seasonality
present. We then calculated the test statistic for each of the 20, 000 series and calculated the value at the
90th quantile to provide an empirical critical value under those finite sample conditions. This table allows
us to review the convergence of the critical values which varies substantially between tests.
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Table 7: Empirical Critical Values: Monthly Data, α = 10%

Time (Years) QS D8F FM M7 FMB WE KW FR

5 2.018 2.245 4.408 1.613 1.787 2.293 15.832 16.500
10 2.236 2.079 4.566 1.783 1.665 1.791 16.882 16.915
15 2.220 2.025 4.887 1.833 1.625 1.696 17.047 16.989
20 2.248 2.029 5.249 1.866 1.616 1.659 17.122 17.040
25 2.233 2.035 5.530 1.879 1.602 1.640 17.126 17.174
30 2.277 2.028 5.753 1.892 1.601 1.628 17.175 17.260
35 2.300 2.023 5.914 1.903 1.594 1.613 17.210 17.231
40 2.288 2.011 6.053 1.909 1.585 1.607 17.199 17.249
45 2.299 2.009 6.186 1.911 1.591 1.610 17.227 17.241
50 2.346 2.013 6.296 1.913 1.595 1.604 17.243 17.220
55 2.318 2.011 6.391 1.905 1.591 1.595 17.227 17.237
60 2.338 2.007 6.491 1.912 1.584 1.590 17.242 17.266
65 2.345 2.001 6.574 1.917 1.577 1.582 17.216 17.267
70 2.337 2.002 6.636 1.919 1.578 1.583 17.205 17.228
75 2.379 1.997 6.652 1.930 1.569 1.580 17.237 17.192
80 2.380 2.013 6.724 1.922 1.567 1.577 17.117 17.206
85 2.366 1.996 6.722 1.920 1.569 1.581 17.166 17.172
90 2.405 2.010 6.742 1.912 1.565 1.572 17.150 17.099
95 2.412 1.999 6.811 1.920 1.564 1.572 17.153 17.167
100 2.357 1.994 6.853 1.916 1.574 1.578 17.209 17.204

Note: For each time set we generated 20, 000 series where the null hypothesis is true, there is no seasonality
present. We then calculated the test statistic for each of the 20, 000 series and calculated the value at the
90th quantile to provide an empirical critical value under those finite sample conditions.
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Table 8: Empirical Critical Values: Quarterly Data α = 5%

Time (Years) QS D8F FM M7 FMB WE KW FR

10 11.205 3.893 3.083 1.158 3.219 3.156 6.420 7.533
20 18.449 3.712 2.850 1.205 2.801 2.831 7.453 7.737
30 5.472 3.551 2.880 1.239 2.681 2.704 7.585 7.634
40 3.707 3.602 2.947 1.235 2.700 2.707 7.728 7.708
50 3.458 3.603 3.045 1.246 2.667 2.706 7.722 7.751
60 3.397 3.583 3.109 1.254 2.646 2.653 7.759 7.759
70 3.428 3.598 3.132 1.258 2.665 2.670 7.727 7.661
80 3.485 3.544 3.199 1.264 2.608 2.625 7.714 7.724
90 3.496 3.617 3.215 1.258 2.634 2.637 7.755 7.800
100 3.537 3.579 3.272 1.262 2.630 2.634 7.777 7.788
110 3.568 3.545 3.322 1.269 2.613 2.613 7.776 7.668
120 3.559 3.580 3.334 1.267 2.624 2.621 7.750 7.760
130 3.563 3.602 3.368 1.261 2.610 2.615 7.735 7.716
140 3.582 3.581 3.380 1.263 2.634 2.629 7.799 7.722
150 3.504 3.649 3.423 1.256 2.622 2.635 7.862 7.752
160 3.522 3.604 3.467 1.259 2.629 2.641 7.817 7.732
170 3.571 3.597 3.474 1.256 2.626 2.627 7.818 7.758
180 3.606 3.605 3.519 1.259 2.617 2.623 7.813 7.780
190 3.615 3.562 3.525 1.263 2.608 2.605 7.769 7.775
200 3.569 3.598 3.513 1.271 2.608 2.614 7.854 7.830
210 3.606 3.636 3.526 1.263 2.623 2.634 7.865 7.817
220 3.570 3.613 3.529 1.259 2.637 2.642 7.899 7.795
230 3.537 3.604 3.546 1.262 2.639 2.638 7.853 7.810
240 3.556 3.572 3.564 1.265 2.628 2.621 7.781 7.715
250 3.561 3.553 3.603 1.269 2.638 2.633 7.797 7.733
260 3.616 3.569 3.614 1.271 2.626 2.628 7.829 7.740
270 3.604 3.611 3.604 1.263 2.639 2.643 7.827 7.764
280 3.634 3.618 3.599 1.255 2.643 2.642 7.896 7.804
290 3.597 3.651 3.570 1.253 2.677 2.670 7.870 7.767
300 3.602 3.638 3.578 1.259 2.660 2.642 7.877 7.844

Note: For each time set we generated 20, 000 series where the null hypothesis is true, there is no seasonality
present. We then calculated the test statistic for each of the 20, 000 series and calculated the value at the
95th quantile to provide an empirical critical value under those finite sample conditions. This table allows
us to review the convergence of the critical values which varies substantially between tests (e.g. the QS
doesn’t stabalize until approximately 40 years of quarterly data is available while the Friedman converges
relatively quickly at 20 years).
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Table 9: Empirical Critical Values: Monthly Data α = 5%

Time (Years) QS D8F FM M7 FMB WE KW FR

5 3.356 2.804 5.697 1.422 2.126 2.895 17.801 18.269
10 3.664 2.599 5.877 1.583 1.921 2.094 19.011 19.000
15 3.563 2.512 6.405 1.641 1.865 1.976 19.288 19.330
20 3.566 2.505 6.861 1.659 1.844 1.916 19.382 19.324
25 3.543 2.486 7.222 1.683 1.824 1.878 19.425 19.379
30 3.565 2.507 7.553 1.684 1.825 1.865 19.484 19.547
35 3.608 2.494 7.757 1.701 1.826 1.855 19.500 19.516
40 3.623 2.491 7.944 1.708 1.806 1.843 19.471 19.560
45 3.571 2.478 8.083 1.704 1.812 1.837 19.521 19.626
50 3.617 2.495 8.190 1.696 1.811 1.831 19.555 19.581
55 3.640 2.488 8.305 1.705 1.807 1.827 19.576 19.601
60 3.604 2.464 8.440 1.700 1.803 1.823 19.492 19.616
65 3.630 2.467 8.454 1.714 1.803 1.820 19.575 19.616
70 3.669 2.463 8.609 1.714 1.807 1.828 19.611 19.670
75 3.640 2.469 8.673 1.718 1.802 1.815 19.555 19.561
80 3.685 2.472 8.750 1.713 1.793 1.801 19.542 19.501
85 3.635 2.454 8.835 1.723 1.796 1.813 19.549 19.500
90 3.731 2.451 8.875 1.719 1.788 1.804 19.522 19.382
95 3.694 2.466 8.955 1.718 1.792 1.812 19.564 19.442
100 3.668 2.471 8.956 1.712 1.791 1.802 19.571 19.617

Note: For each time set we generated 20, 000 series where the null hypothesis is true, there is no seasonality
present. We then calculated the test statistic for each of the 20, 000 series and calculated the value at the
95th quantile to provide an empirical critical value under those finite sample conditions.
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Table 10: Empirical Critical Values: Quarterly Data, α = 1%

Time (Years) QS D8F FM M7 FMB WE KW FR

10 18.140 6.194 5.054 0.912 5.479 4.981 9.482 10.335
20 36.330 5.543 4.713 0.970 4.147 4.266 10.826 10.705
30 41.174 5.340 4.817 1.013 4.042 4.136 10.828 10.945
40 10.110 5.370 4.832 1.018 4.010 4.055 11.103 11.215
50 7.091 5.359 5.035 1.015 3.927 3.957 11.109 11.033
60 6.707 5.458 5.159 1.016 3.972 3.988 11.272 11.156
70 6.648 5.375 5.171 1.012 3.919 3.902 11.278 11.035
80 6.631 5.332 5.244 1.020 3.832 3.913 11.090 11.248
90 6.578 5.294 5.179 1.032 3.872 3.861 11.149 11.171
100 6.557 5.295 5.179 1.032 3.833 3.823 11.077 11.218
110 6.837 5.333 5.227 1.023 3.819 3.857 11.031 11.246
120 6.778 5.337 5.148 1.029 3.810 3.844 11.268 11.188
130 6.665 5.370 5.230 1.019 3.874 3.874 11.232 11.279
140 6.747 5.335 5.215 1.019 3.862 3.891 11.224 11.340
150 6.609 5.400 5.205 1.019 3.888 3.919 11.498 11.279
160 6.674 5.325 5.332 1.028 3.825 3.825 11.221 11.279
170 6.631 5.329 5.317 1.024 3.817 3.867 11.357 11.230
180 6.613 5.321 5.297 1.027 3.790 3.816 11.210 11.253
190 6.603 5.307 5.282 1.025 3.797 3.832 11.145 11.229
200 6.615 5.328 5.301 1.025 3.857 3.846 11.355 11.394
210 6.682 5.373 5.294 1.014 3.907 3.872 11.340 11.469
220 6.636 5.349 5.242 1.024 3.881 3.853 11.387 11.296
230 6.699 5.292 5.261 1.025 3.849 3.876 11.306 11.201
240 6.679 5.329 5.236 1.020 3.818 3.848 11.346 11.220
250 6.643 5.382 5.307 1.021 3.815 3.819 11.371 11.202
260 6.711 5.328 5.283 1.022 3.783 3.822 11.328 11.261
270 6.721 5.358 5.312 1.028 3.812 3.817 11.415 11.387
280 6.694 5.341 5.314 1.023 3.803 3.811 11.306 11.245
290 6.737 5.342 5.302 1.019 3.884 3.893 11.402 11.246
300 6.667 5.359 5.252 1.021 3.866 3.882 11.527 11.256

Note: For each time set we generated 20, 000 series where the null hypothesis is true, there is no seasonality
present. We then calculated the test statistic for each of the 20, 000 series and calculated the value at the
99th quantile to provide an empirical critical value under those finite sample conditions. This table allows
us to review the convergence of the critical values which varies substantially between tests.
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Table 11: Empirical Critical Values: Monthly Data, α = 1%

Time (Years) QS D8F FM M7 FMB WE KW FR

5 6.622 4.401 9.349 1.124 2.892 4.796 21.722 21.808
10 7.591 3.814 9.587 1.283 2.488 2.854 23.244 23.496
15 6.986 3.620 10.533 1.348 2.384 2.582 23.907 23.945
20 6.792 3.667 10.930 1.371 2.347 2.495 24.041 23.745
25 6.939 3.649 11.230 1.374 2.310 2.393 24.175 24.013
30 6.906 3.548 11.575 1.394 2.301 2.404 24.265 24.279
35 7.039 3.548 11.727 1.397 2.282 2.374 24.270 24.299
40 7.089 3.595 12.032 1.396 2.285 2.347 24.211 24.282
45 6.924 3.580 12.271 1.400 2.271 2.335 24.089 24.381
50 6.889 3.564 12.380 1.388 2.270 2.316 24.137 24.551
55 6.932 3.593 12.484 1.397 2.257 2.299 24.231 24.316
60 6.808 3.553 12.435 1.399 2.279 2.317 24.590 24.450
65 6.944 3.500 12.679 1.398 2.282 2.329 24.760 24.416
70 6.829 3.536 12.768 1.413 2.293 2.299 24.565 24.650
75 6.808 3.522 12.758 1.405 2.273 2.300 24.594 24.626
80 6.801 3.494 12.994 1.419 2.278 2.283 24.243 24.595
85 6.887 3.511 13.013 1.406 2.262 2.272 24.317 24.522
90 6.911 3.504 13.084 1.415 2.248 2.275 24.303 24.544
95 6.935 3.490 13.117 1.414 2.249 2.270 24.316 24.272
100 6.835 3.599 13.207 1.396 2.244 2.263 24.360 24.382

Note: For each time set we generated 20, 000 series where the null hypothesis is true, there is no seasonality
present. We then calculated the test statistic for each of the 20, 000 series and calculated the value at the
99th quantile to provide an empirical critical value under those finite sample conditions.
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Table 12: Nominal Accuracy Table: Test Data

RF QS M7 D8F FM FMB WE KW FR N. Series

Accuracy 0.95 0.63 0.51 0.51 0.60 0.54 0.54 0.54 0.53 5,000,000

ACC|P = 1 0.88 0.25 0.02 0.01 0.31 0.18 0.18 0.13 0.12 416,529
Φ1 > 0 0.88 0.49 0.04 0.03 0.29 0.33 0.32 0.24 0.22 208,181
Φ1 < 0 0.88 0.00 0.00 0.00 0.32 0.04 0.04 0.01 0.02 208,348

ACC|P = 2 0.95 0.30 0.04 0.05 0.62 0.22 0.21 0.18 0.16 416,795
Φ1,Φ2 > 0 0.96 0.75 0.13 0.20 0.67 0.62 0.60 0.55 0.49 103,721
Φ2,Φ2 < 0 0.95 0.00 0.00 0.00 0.59 0.01 0.01 0.00 0.01 103,933∑2
p=1 Φp > 0 0.96 0.55 0.07 0.11 0.62 0.41 0.40 0.35 0.32 208,371∑2
p=1 Φp < 0 0.95 0.05 0.00 0.00 0.63 0.02 0.02 0.01 0.01 208,424

ACC|P = 3 0.98 0.33 0.06 0.09 0.85 0.23 0.23 0.21 0.20 417,260
Φ1,Φ2,Φ3 > 0 0.99 0.88 0.32 0.51 0.89 0.85 0.83 0.80 0.74 52,098
Φ2,Φ2,Φ3 < 0 0.98 0.06 0.00 0.00 0.82 0.00 0.00 0.00 0.00 52,023∑3

p=1 Φp > 0 0.98 0.51 0.11 0.18 0.84 0.46 0.45 0.42 0.38 208,401∑3
p=1 Φp < 0 0.98 0.15 0.00 0.00 0.86 0.01 0.01 0.00 0.01 208,859

ACC|P > 0 0.94 0.29 0.04 0.05 0.59 0.21 0.21 0.17 0.16 1,250,584

ACC|Q = 1 0.87 0.23 0.01 0.00 0.19 0.14 0.14 0.08 0.09 416,757
Θ1 > 0 0.87 0.46 0.02 0.01 0.18 0.25 0.24 0.16 0.16 208,479
Θ1 < 0 0.87 0.00 0.00 0.00 0.20 0.04 0.04 0.01 0.02 208,278

ACC|Q = 2 0.93 0.26 0.02 0.01 0.19 0.16 0.16 0.10 0.10 416,714
Θ1,Θ2 > 0 0.93 0.66 0.05 0.02 0.18 0.39 0.38 0.28 0.26 104,512
Θ2,Θ2 < 0 0.92 0.00 0.00 0.00 0.20 0.01 0.01 0.00 0.01 104,652∑2
p=1 Θp > 0 0.93 0.49 0.04 0.01 0.18 0.29 0.29 0.20 0.19 208,435∑2
p=1 Θp < 0 0.93 0.02 0.00 0.00 0.20 0.03 0.03 0.01 0.01 208,279

ACC|Q = 3 0.92 0.24 0.02 0.01 0.19 0.16 0.16 0.11 0.11 416,462
Θ1,Θ2,Θ3 > 0 0.92 0.67 0.08 0.04 0.18 0.49 0.48 0.39 0.35 52,076
Θ2,Θ2,Θ3 < 0 0.91 0.00 0.00 0.00 0.20 0.00 0.00 0.00 0.00 52,426∑3

p=1 Θp > 0 0.91 0.42 0.04 0.02 0.18 0.31 0.30 0.21 0.21 207,990∑3
p=1 Θp < 0 0.92 0.07 0.00 0.00 0.20 0.02 0.02 0.01 0.01 208,472

ACC|Q > 0 0.90 0.24 0.02 0.01 0.19 0.16 0.15 0.10 0.10 1,249,933

ACC|P,Q = 0 0.98 0.99 0.99 1.00 0.81 0.89 0.89 0.95 0.94 2,499,483

Here we calculate the accuracy based on the nominal critical values for each test and compare them to the
out-of-sample prediction accuracy of the Random Forest. The breakdowns are to show accuracy when the
null is false (equivalent to power) under specific seasonal dimensionality conditions. Note that there is no
constraints on the parameter space of Φ or Θ beyond those which are standard.
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(a) Here we have generated 100, 000 data sets
to illustrate the variation in classification from
the QS Statistic and Kruskal-Wallis Statistic.
Here the QS Statistic has a nominal critical
value of 5.991 (χ2 with df = 2) and the axis
has been scaled for both test statistics to be
twice the appropriate critical value.Those se-
ries in red (blue) are seasonal (non-seasonal)
by construction.

(b) Here we have generated 100, 000 data sets
to illustrate the variation in classification from
the Freidman and Kruskal-Wallis Statistic.
Both of these statistics have identical critical
values (χ2 with df = S − 1) and the axis has
been scaled for both test statistics to be twice
the appropriate critical value. Those series in
red (blue) are seasonal (non-seasonal) by con-
struction.

(c) Here we have generated 100, 000 data sets
to illustrate the variation in classification from
the D8F and Kruskal-Wallis Statistic. In this
case we use the suggested critical value for the
D8F (7), and the axis has been scaled for both
test statistics to be twice the appropriate crit-
ical value. Those series in red (blue) are sea-
sonal (non-seasonal) by construction.

(d) Here we have generated 100, 000 data sets
to illustrate the variation in classification from
the M7 Statistic and Kruskal-Wallis Statistic.
In this case we use the suggested critical value
for the M7 (1), and the axis has been scaled for
both test statistics to be twice the appropri-
ate critical value. For consistency in quadrant
interpretation we have used the inverse of the
M7 Statistic.

(e) Here we have generated ≈ 62, 000 data sets
to illustrate the variation in classification from
the F-Moving and Kruskal-Wallis Statistic. In
this case we fix T = 196, f = 4 so as to keep
the critical value for the FM constant and the
axis has been scaled for both test statistics to
be twice the appropriate critical value. Those
series in red (blue) are seasonal (non-seasonal)
by construction.

(f) Here we have generated ≈ 62, 000 data sets
to illustrate the variation in classification from
the F-Model Based and Kruskal-Wallis Statis-
tic. In this case we fix T = 196, f = 4 so as
to keep the critical value for the FMB con-
stant and the axis has been scaled for both
test statistics to be twice the appropriate crit-
ical value.

Figure 1: Variation in Classification43



Figure 2: RF Algorithm
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(a) In this figure it is pretty clear that the
empirical distribution of the QS test statistic
under the null is no where near converging to
the hypothesized distribution, χ2

2. The critical
value for α = 5% under such sample sizes is
≈ 3.7 as compared to the nominal value of
≈ 5.9. Note that, unlike many of the other
tests, the critical value for different frequency
data is roughly the same for the QS statistic.

(b) This figure shows the empirical distribu-
tion (blue) and nominal distribution (black)
under the null. In this case the empirical dis-
tribution is shifted to the right substantially
which indicates that the corresponding criti-
cal values for any test should be much higher
than are assumed. The empirical distribution
implies a critical value of ≈ 8.9 compared to
the nominal value of ≈ 1.79 when α = 5%.

(c) Much like panel (b), this figure shows the
distribution of the FM statistic under the null
for quarterly data both in nominal (black solid
line) and empirical (grey dashed line) terms.
Here the entire distribution is shifted over in-
dicating that the nominal critical value is too
small under the null. While this is similar to
the monthly data it is important to note that
the test is not quite as oversized in the quar-
terly case.

Figure 4: Empirical Vs. Nominal Distributions Under the Null
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(a) QS Empirical CV: Power ≈ 38.9% (b) D8F Empirical CV: Power ≈ 15.9%

(c) FM Empirical CV: Power ≈ 18.2% (d) M7 Empirical CV: Power ≈ 14.2%

(e) FMB Empirical CV: Power ≈ 24.3% (f) WE Empirical CV: Power ≈ 24.7%

(g) KW Empirical CV: Power ≈ 21.3% (h) FR Empirical CV: Power ≈ 19.9%

Figure 5: Power Contour Plots: Monthly Frequency
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(a) QS Empirical CV: Power ≈ 29.5% (b) D8F Empirical CV: Power ≈ 14.6%

(c) FM Empirical CV: Power ≈ 19.4% (d) M7 Empirical CV: Power ≈ 12.5%

(e) FMB Empirical CV: Power ≈ 20.4% (f) WE Empirical CV: Power ≈ 20.2%

(g) KW Empirical CV: Power ≈ 14.4% (h) FR Empirical CV: Power ≈ 13.2%

Figure 6: Power Contour Plots: Quarterly Frequency
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Figure 7: Top 15 Important Features

Note: Here we are providing the top fifteen features by mean reduction in Gini Impurity. We denote a first
difference series by ∆ and a level series with no additional qualifier (e.g. ∆ Kurtosis refers to the Kurtosis
of the first difference series. The term “Decomposed” refers to an adjusted series which removes the trend
and seasonal component using an STL decomposition.
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(a) Here we are plotting the accuracy
curves for the RF and QS statistic over a
(0 1 0)(1 0 0)12 model structure. We have
omitted the case where Φ1 = 0 since we dis-
cussed the size of the test earlier. Note how
in the negative portion of the domain the QS
statistic is “blind” and has zero power. This
is consistent across the range of tests we ex-
amined.

(b) Here we are plotting the accuracy
curves for the RF and QS statistic over a
(0 1 0)(1 0 0)4 model structure. We have omit-
ted the case where Φ1 = 0 since we discussed
the size of the test earlier. For quarterly data
there is less data points for an equivalent num-
ber of years in monthly data and as a result
the QS experiences a loss of power.

(c) Here we are plotting the accuracy
curves for the RF and QS statistic over a
(0 1 0)(0 0 1)12 model structure. We have
omitted the case where Φ1 = 0 since we dis-
cussed the size of the test earlier. As would be
expected, a switch to an MA structure from
an AR structure produces a loss in power for
both the RF predictions and the QS test.

(d) Here we are plotting the accuracy
curves for the RF and QS statistic over a
(0 1 0)(0 0 1)4 model structure. We have
omitted the case where Φ1 = 0 since we dis-
cussed the size of the test earlier. The de-
gredation continues as the number of observa-
tions shrinks due to the fruency change.

Figure 8: Accuracy over Single Dimension Seasonality
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(a) Here we are plotting the contour plot of the
parameters Φ from (0 1 0)(2 0 0) series. These
are mixed frequency and each point represents
a simulated series. If the QS statistic rejects
the null hypothesis of no seasonality then the
points are empty circles and red. If the QS
statistic fails to reject the null they are filled
circles and blue.

(b) Here we are plotting the contour plot of
the parameters Φ from (0 1 0)(2 0 0) series.
These are mixed frequency and each point rep-
resents a simulated series. If the RF predicts
seasonality, then the points are empty circles
and red. If the RF predicts no seasonality then
they are filled circles and blue.

(c) Here we are plotting the contour plot of the
parameters Θ from (0 1 0)(0 0 2) series. These
are mixed frequency and each point represents
a simulated series. If the QS statistic rejects
the null hypothesis of no seasonality then the
points are empty circles and red. If the QS
statistic fails to reject the null they are filled
circles and blue.

(d) Here we are plotting the contour plot of
the parameters Θ from (0 1 0)(0 0 2) series.
These are mixed frequency and each point rep-
resents a simulated series. If the RF predicts
seasonality, then the points are empty circles
and red. If the RF predicts no seasonality then
they are filled circles and blue.

Figure 9: Accuracy over Two Dimensional Seasonality
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Figure 10: Random Forest ROC: Training Data
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Figure 11: Retail Sales: Shoe Stores

(a) Not seasonally adjusted data
(black), and seasonally adjusted data
(red).

(b) Autocorrelation func-
tion of ∆ln(Shoes).

(c) Autocorrelation func-
tion of ∆ln(Shoes∗).
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(d) Here we are plotting the variable contribution to predicting if the not seasonally adjusted data are seasonal and should be
considered as a candidate for adjustment.

(e) Here we are plotting the variable contribution to predicting if the seasonally adjusted data are residually seasonal.

Figure 12: Retail Sales Shoe Stores: Prediction Contributions
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Figure 13: Variation in Test Statistics: U.S. Import/Export

55


	Introduction
	Detecting Seasonality
	Simulations
	Simulation Structure
	New Facts, Old Tests
	Results from the Random Forest
	Recapping the Results from Simulations

	Empirical Examples
	 U.S. Retail Sales: Shoe Stores
	U.S. Import/Export Series

	Conclusion
	Tests for Seasonality
	Critical Values at Common Values of 
	Nominal Accuracy for RF

